Sucrose transporter1 functions in phloem loading in maize leaves
نویسندگان
چکیده
In most plants, sucrose is exported from source leaves to carbon-importing sink tissues to sustain their growth and metabolism. Apoplastic phloem-loading species require sucrose transporters (SUTs) to transport sucrose into the phloem. In many dicot plants, genetic and biochemical evidence has established that SUT1-type proteins function in phloem loading. However, the role of SUT1 in phloem loading in monocot plants is not clear since the rice (Oryza sativa) and sugarcane (Saccharum hybrid) SUT1 orthologues do not appear to function in phloem loading of sucrose. A SUT1 gene was previously cloned from maize (Zea mays) and shown to have expression and biochemical activity consistent with a hypothesized role in phloem loading. To determine the biological function of SUT1 in maize, a sut1 mutant was isolated and characterized. sut1 mutant plants hyperaccumulate carbohydrates in mature leaves and display leaf chlorosis with premature senescence. In addition, sut1 mutants have greatly reduced stature, altered biomass partitioning, delayed flowering, and stunted tassel development. Cold-girdling wild-type leaves to block phloem transport phenocopied the sut1 mutants, supporting a role for maize SUT1 in sucrose export. Furthermore, application of (14)C-sucrose to abraded sut1 mutant and wild-type leaves showed that sucrose export was greatly diminished in sut1 mutants compared with wild type. Collectively, these data demonstrate that SUT1 is crucial for efficient phloem loading of sucrose in maize leaves.
منابع مشابه
Radiosynthesis of 6’-Deoxy-6’[18F]Fluorosucrose via Automated Synthesis and Its Utility to Study In Vivo Sucrose Transport in Maize (Zea mays) Leaves
Sugars produced from photosynthesis in leaves are transported through the phloem tissues within veins and delivered to non-photosynthetic organs, such as roots, stems, flowers, and seeds, to support their growth and/or storage of carbohydrates. However, because the phloem is located internally within the veins, it is difficult to access and to study the dynamics of sugar transport. Radioactive ...
متن کاملTie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning.
Carbon is partitioned between export from the leaf and retention within the leaf, and this process is essential for all aspects of plant growth and development. In most plants, sucrose is loaded into the phloem of carbon-exporting leaves (sources), transported through the veins, and unloaded into carbon-importing tissues (sinks). We have taken a genetic approach to identify genes regulating car...
متن کاملCompanion-Cell Specific Localization of Sucrose Synthase in Zones of Phloem Loading and Unloading.
An immunohistochemical approach was used in maize (Zea mays) and citrus (Citrus paradisi) to address the previously noted association between sucrose synthase and vascular bundles and to determine the localization of the low but detectable levels of sucrose synthase that remain in leaves after the import-export transition. Sucrose synthase protein was immunolocalized at the light microscope lev...
متن کاملModification of a Specific Class of Plasmodesmata and Loss of Sucrose Export Ability in the sucrose export defective1 Maize Mutant.
We report on the export capability and structural and ultrastructural characteristics of leaves of the sucrose export defective1 (sed1; formerly called sut1) maize mutant. Whole-leaf autoradiography was combined with light and transmission electron microscopy to correlate leaf structure with differences in export capacity in both wild-type and sed1 plants. Tips of sed1 blades had abnormal accum...
متن کاملUnderstanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security.
Sucrose is produced in, and translocated from, photosynthetically active leaves (sources) to support non-photosynthetic tissues (sinks), such as developing seeds, fruits, and tubers. Different plants can utilize distinct mechanisms to transport sucrose into the phloem sieve tubes in source leaves. While phloem loading mechanisms have been extensively studied in dicot plants, there is less infor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Experimental Botany
دوره 60 شماره
صفحات -
تاریخ انتشار 2009